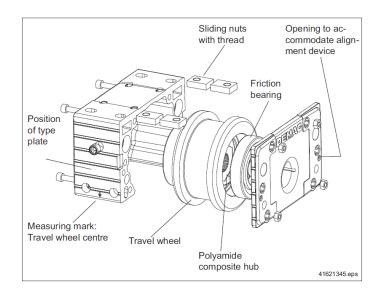
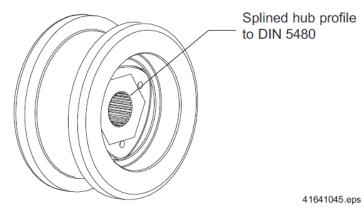


DRS Wheel Block Quick Reference Guide

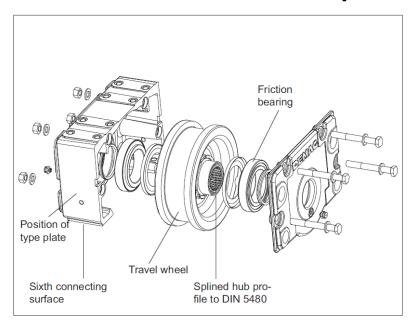




Contents

DRS 112 - 200 Product Description	2
DRS 250 - 500 Product Description	3
Model Code Explanation	4-5
Load Spectrum Determination	6
Wheel Block Quick Selection Table	7
Ground Clearance Tables	8-11

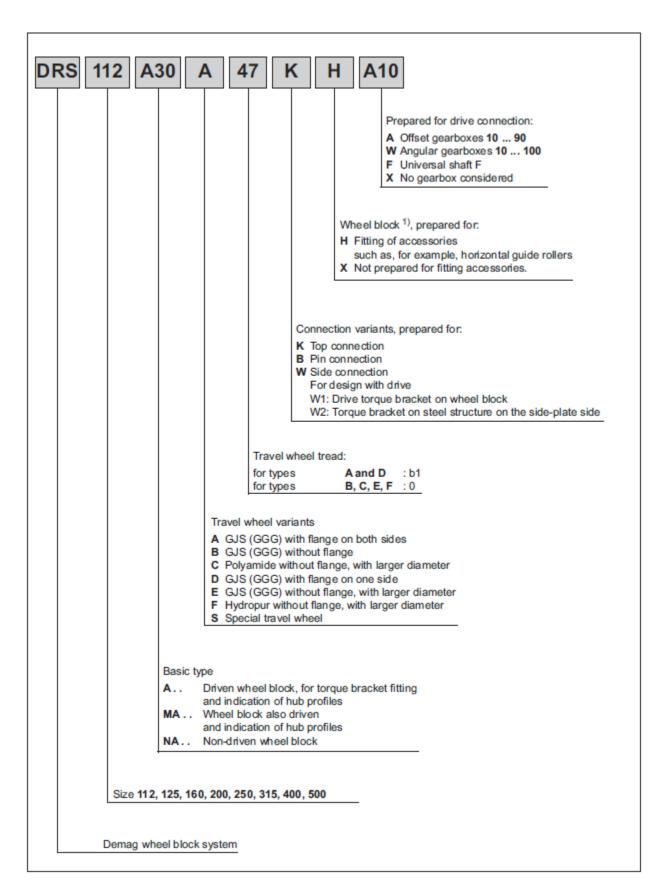
DRS 112 - 200 Product Description



The Demag DRS 112 to 200 wheel block system, suitable for loads up to 10000 kg/22,000 lbs, is a concept designed to meet customer wishes. The advantages of the system are:

- Most favorable ground clearance conditions with Demag offset geared motors.
- Robust aluminum housing with very good shape and position tolerances.
- Variable basic design by fitting various travel wheel materials and shapes.
- Weather-resistant due to surface powder coating (RAL 7001, silver grey). Special paint finish available on request.
- Compensation of track gauge deviations of up to 3 mm per side possible.
- Protected internal bearing arrangement.
- Minimum maintenance due to bearings lubricated for life.
- Travel wheel and bearings can be replaced thanks to bolted housing.
- High installation availability since the housing with top connection does not necessarily need to be removed to replace the travel wheel. Not having to realign the housing saves time.
- The damping element in the travel wheel reduces the load on the gearbox.
- The gearbox output torque is transmitted to the wheel block virtually without any radial force by means of the special Demag torque bracket.
- High-tensile bolted connections are zinc-coated and therefore provided with long-term corrosion protection.

DRS 250 - 500 Product Description



The Demag DRS 250 to 500 wheel block system, suitable for loads up to 40000 kg/ 88,000 lbs, is designed as a heavy-duty travel unit based on the same principle as the smaller DRS 112 to 200 series. The advantages of the system are:

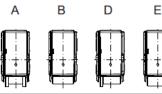
- Most favorable ground clearance conditions with Demag offset geared motors.
- A robust spheroidal graphite cast iron housing with precisely machined connecting surfaces.
- Variable basic design by fitting various travel wheel materials and shapes.
- Possible compensation of track gauge deviations up to 4 mm or skewing up to 14 %...
- Protected internal bearing arrangement featuring tapered-roller bearings.
- Minimum maintenance due to bearings lubricated for life with standard ambient conditions.
- The friction bearing arrangement is prepared for re-lubrication in the case of special ambient conditions and re-lubrication sets can be simply added later on.
- Travel wheel and bearings can be replaced thanks to bolted housing.
- High installation availability since the housing with top connection does not necessarily need to be removed to replace the travel wheel. Not having to realign the housing saves time.
- The torque bracket, designed to match the wheel block, reduces peak loads and enables the drive torque to be transmitted virtually without any radial force.
- High-tensile bolted connections are zinc-coated and therefore provided with long-term corrosion protection.

Model Code Explanation

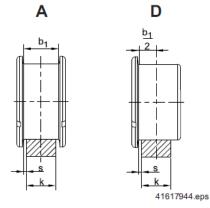
A MA NA

Contact Demag for an overview of splined hub profiles and diameters 42099544.eps

A/MA NA


42099545.eps

DRS 112 - 200 travel wheel variants


43431444.eps

DRS 250 - 500 travel wheel variants

42098944.eps

Travel wheel variant

Distance s on each side min. 1 mm $\!\!/$ max. 5 mm, tolerance class 2 to VDI 3576

Wheel block	Travel wheel width		Tra	Rail width		
				Standard trav	el wheel type	
	[mm]	to 1)	to ²⁾	Α	D	k
DRS 112	80	60	62	47, 55, 60	47	4060
DRS 125	80	60	62	47, 55, 60	47, 60	4060
DRS 160	89	65	67	47, 55, 60, 65	47, 65	4065
DRS 200	101	67	75	55, 60, 65, (75 ²⁾)	65	5070
DRS 250	110	77	80	52, 60, 65, 70, 75	65, 75	5075
DRS 315	130	90	96	65, 75, 80, 90	80, 90	6090
DRS 400	155	110	-	75, 80, 90, 110	80, 110	65100
DRS 500	170	110	-	90, 110	90, 110	70100

DRS 112 - 200 connection variants

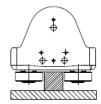
vv Box-section girder

Box-section End connection

DRS 250 – 500 connection variants

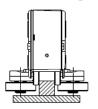
Box-section

girder



DRS 250 end

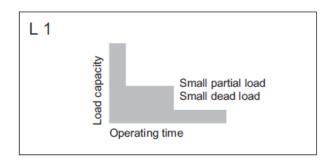
connection


42099444.eps

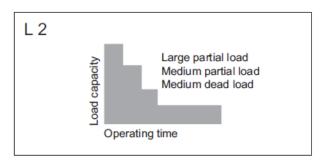
DRS 112 - 200 roller guide arrangements

42099144.eps

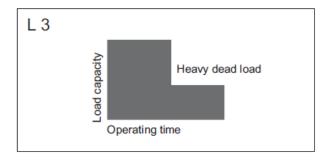
DRS 250 - 500 roller guide arrangements


42099244.eps

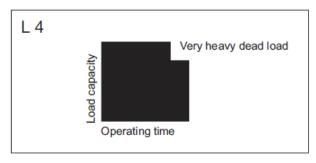
²⁾ Hardened travel wheels (treads and flanges), for DRS 112 – 200, flanges without wear indicator


¹⁾ For travel wheel treads smaller than the smallest standard tread, there is no wear indicator.

Load Spectrum Determination


Light ($k \le 0.5$):

Mechanisms, or parts thereof, usually subject to light loads and occasional maximum loads.


Medium $(0.5 < k \le 0.63)$:

Mechanisms, or parts thereof, usually subject to light loads, but with a higher incidence of maximum load.

Heavy $(0.63 < k \le 0.8)$:

Mechanisms, or parts thereof, usually subject to medium loads, and frequently to maximum loads.

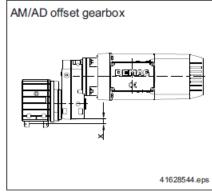
Very heavy $(0.8 < k \le 1)$:

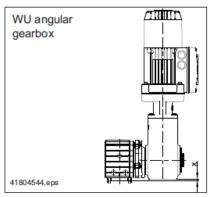
Mechanisms, or parts thereof, usually subject to maximum or almost maximum loads.

Load spectrum	Average daily operating time [h]										
		≤ 0.25	≤ 0.5	≤1	≤ 2	≤ 4	≤ 8	≤ 16	> 16		
Light	k ≤ 0.50	-	-	-	1 Bm	1 Am	2 m	3 m	4 m		
Medium	k ≤ 0.63	_	-	1 Bm	1 Am	2 m	3 m	4 m	5 m		
Heavy	k ≤ 0.80	-	1 Bm	1 Am	2 m	3 m	4 m	5 m	-		
Very heavy	k ≤ 1	1 Bm	1 Am	2 m	3 m	4 m	5 m	_	-		

Wheel Block Quick Selection Table

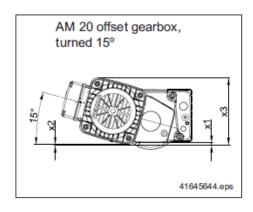
Grou	p of mecha	nisms/load	d factor gr	oup					Tra	avelspe	ed [m/m	in]				
FEM	3 m	2 m	1 Am	1 Bm	12.5	16	20	25	31.5	40	50	63	80	100	125	1
ISO	M 6	M 5	M 4	М3												L
	1160	1460	1840	2320											<u> </u>	
	1260	1590	2000	2520				44								L
	1360	1710	2160	2720									<u> </u>			L
	1460	1840	2320	2750												L
	1570	1980	2500	3150												
	1710	2150	2710	3420												L
	1840	2320	2920	3680				12	25							
	1980	2500	3150	3970												
	2150	2710	3410	4300									_			
	2320	2920	3680	4640												L
돭	2500	3150	3970	5000												
×	3000	3650	4520	5560												
ead	3260	3950	4870	5990				10	60							H
غ =	3510	4220	5200	6410												H
- 2	3780	4520	5560	6850										_		Н
per wheel block for flat rails with max. useful rail head width	4090	4850	5980	7000												H
ä	4340	4900	6040	7440												
æ	4710 5080	5280 5650	6500 6950	8010 8560												H
£								20	00							Н
× s	5470	6040	7440	9160												H
rai	5920 6340	6490 6950	7990 8560	9840 10000												H
flat	8100	9900	11000	13100												Н
٥	8650	10500	11350	14000												H
S	9300	10750	12150	14950										_		H
old	9900	11000	13050	16000				2	50							H
96	10500	11350	14000	16000												
\$	10750	12150	14950	16000												
	12050	12950	13850	16400												
[kg]	12350	13250	14350	17650												
Mass [kg]	12650	13550	15350	18900												
Ma	12950	13850	16400	20200				31	15							
	13250	14300	17650	21700												
	13550	15350	18900	22000												
	17500	19400	21000	25850												
	18550	19900	22600	27800					20							
	18950	20350	24150	29750				40	JU							
	19400	21000	25850	30000												
	21650	24750	28000	34500												
	23100	25400	30150	37150					20							Г
	24200	26200	32250	39750				50	JU							
	24750	28000	34500	40000												

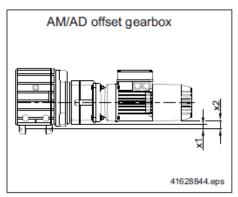

** Conversion Factor:

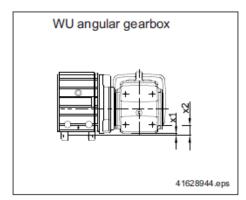

- Multiply kg value by 2.2 to get mass in lbs.
- Multiply m/min by 3.28 to travel speed in ft/min

Ground Clearance Tables- Vertical Gearbox

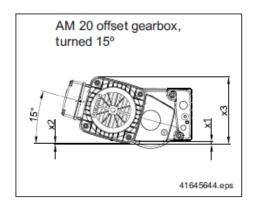
Wheel block	Gearbox	Ground clearance x 1)	Component obstacle
		[mm]	edge
	AM. 10	+5.0	G/D
DRS 112	AM. 20	-1.5	G
DRS 112	WU. 10	-18	D
	WU. 20	-24	G
	AM. 10	+5.5	D
	AM. 20	+5.0	G
DDC 405	AM. 30	-13	G/D
DRS 125	WU. 10	-13	D
	WU. 20	-18	G
	WU. 30	-28	G
	AM. 20	+11	D
ļ	AM. 30	+5.0	G/D
	AM. 40	-10	G
DRS 160	WU. 20	-2.0	D
İ	WU. 30	-10	G
İ	WU. 40	-25	G
	AM. 30	+15	D
	AM. 40	+10	G
ŀ	AD. 50	-15	G
DRS 200	WU. 30	-5.0	D
-	WU. 40	-5.0	D
	WU. 50	-20	G/D
<u> </u>	WU. 60	-10	G
	AD. 40	+20	D
-	AD. 50	+10	G
}	AD. 60	-15	G
DRS 250	WU. 40	+20	D
DK3 230	WU. 50	+5.0	G
}	WU. 60	+15	G
-	WU. 70	-5.0	G
-	AD. 50	+30	D
-	AD. 60	+18	G
DD0.045	AD. 70	-7.5	G
DRS 315	WU. 50	+30	D
-	WU. 60	+30	D
-	WU. 70	+28	G
	WU. 80	-28	G
	AD. 60	+55	D
]	AD. 70	+35	G
DRS 400	AD. 80	0	G
	WU. 70	+55	D
]	WU. 80	+15	G
	WU. 90	-5.0	G
ļ	AD. 70	+82	D
	AD. 80	+50	G
DRS 500	AU. 90	+10	G
DIG 500	WU. 80	+65	G
	WU. 90	+45	G
	WU. 100	-10	G

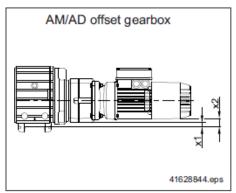


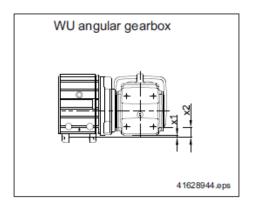

Obstade edge G = Gearbox housing Obstade edge D = Torque bracket


¹⁾ Table values are based on the nominal travel wheel diameter (wheel block size). The ground clearance increases for travel wheel types C, E and F owing to the larger travel wheel diameter.

Ground Clearance Tables- Horizonal Gearbox & Direct Input


Wheel	(Gearbox	Ground clearance	Component			Ground	clearance x2	¹⁾ [mm]		
block			x1 1) [mm]	obstacle			to motor ho	using depend	ing on size		
			to	edge							
			gearbox housing		ZB. 63/71	ZB. 80/90A	ZB. 90B/100	ZB. 112/132	ZB. 160/180A	ZB. 180B/200	ZB. 225
	AM.	10 D	+1.0	G	-14	-23	-42	-	-	-	-
DRS 112	AM.	20 D/I	-9.5	G	-14	-23	-42	-	-	-	-
DRS 112 A A A A A A A A A A A A A A A A A A	WU.	10 D	-18	D	+7.3	-1.2	-	-	-	-	-
	WU.	20 D/I	r -24	G	+11	+2.0	-18	-	-	-	-
	AM.	10 D	+5.5	D	-7.5	-16	-	-	-	-	-
	AM.	20 D/I	-3.0	G	-7.5	-16	-36	-	-	-	-
DDC 125	AM.	30 D/I	-17	G	-7.5	-16	-36	-	-	-	-
DRS 112 MM MM MM MM MM MM MM MM MM MM MM MM MM	WU.	10 D	-13	D	+14	+5.3	-	-	-	-	-
	WU.	20 D/I	-18	G	+17	+8.5	-11	-	-	-	-
	WU.	30 D/I	-28	G	+20	+12	-8.0	-	-	-	-
	AM.	20 D/I	+11	D	+10	+1.5	-18	-	-	-	-
	AM.	30 D/I	+1.0	G	+10	+1.5	-18	-	-	-	-
DDC 460	AM.	40 D/I	-15	G	+10	+1.5	-18	-50	-	-	-
DKS 160	WU.	20 D/I	-2.0	D	+35	+26	+6.5	-	-	-	-
	WU.	30 D/I	-10	G	+38	+29	+9.5	-	-	-	-
	WU.	40 D/I	-25	G	+39	+30	+11	-21	-	-	-
	AM.	30 D/I	+15	D	+30	+22	+2.0	-	-	-	-
	AM.	40 D/I	+5.0	G	+30	+22	+2.0	-30	-	-	-
	AD.	50 D/I	-21	G	+30	+22	+2.0	-30	-	-	-
DDC 200	WU.	30 D/I	-5.0	D	+58	+49	+30	-	-	-	-
DK 3 200	WU.	40 D/I	-5.0	G/D	+59	+50	+31	-1.4	-	-	-
	WU.	50 D/I	-20	G	+63	+55	+35	+3.3	-	-	-
	WU.	60 T	-105	G	+19	+10	-9.5	-42	-	-	-
	WU.	60 Q	-105	G	-25	-33	-53	-85	-	-	-
	AD.	40 D/I	+20	D	+55	+47	+27	-5.0	-	-	-
	AD.	50 D/I	+4.0	G	+55	+47	+27	-5.0	-	-	-
	AD.	60 D/I	-20	G	+55	+47	+27	-5.0	-	-	-
	WU.	40 D/I	+20	G/D	+84	+75	+56	+24	-	-	-
DRS 250	WU.	50 D/I	+5.0	G	+88	+80	+60	+28	-	-	-
	WU.	60 T	-80	G	+44	+35	+16	-17	-44	-	-
	WU.	60 Q	-80	G	+0.5	-8.0	-28	-60	-87	-	-
	WU.	70 T	-120	G	+49	+41	+21	-11	-38	-78	-101
	WU.	70 Q	-120	G	-1.0	-9.5	-29	-61	-88	-128	-151

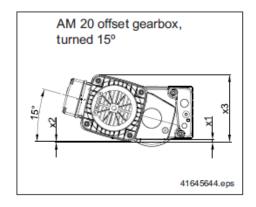

Obstacle edge G = Gearbox housing Obstacle edge D = Torque bracket

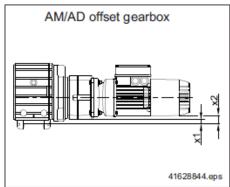

¹⁾ Table values are based on the nominal travel wheel diameter (wheel block size). The ground clearance increases for travel wheel types C, E and F owing to the larger travel wheel diameter.

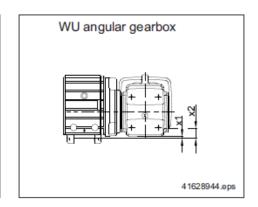
Ground Clearance Tables- Horizonal Gearbox & Direct Input

Wheel	Gear	box	Ground clearance	Component	Ground clearance x2 1) [mm] to motor housing depending on size									
block			x1 ¹⁾ [mm]	obstacle			to motor ho	using depend	ing on size					
			to	edge										
			gearbox housing		ZB. 63/71	ZB. 80/90A	ZB. 90B/100		ZB. 160/180A	ZB. 180B/200	ZB. 225			
	AD.50	D/T	+30	D	+88	+79	+60	+28	-	-	-			
	AD. 60	D/T	+13	G	+88	+79	+60	+28	-	-	-			
	AD. 70	D/T	-16	G	+88	+79	+60	+28	-	-	-			
	WU. 50	D/T	+30	D	+121	+112	+93	+61	-	-	-			
DRS 315	WU. 60	Т	-48	G	+76	+68	+48	+16	-11	-51	-74			
DK3 3 13	WU. 60	Q	-48	G	+33	+25	+5.0	-27	-54	-94	-117			
	WU. 70	Т	-88	G	+82	+73	+54	+22	-5.5	-46	-69			
	WU. 70	Q	-88	G	+32	+23	+3.5	-29	-56	-96	-119			
	WU. 80	Т	-118	G	+56	+47	+28	-4.5	-32	-72	-95			
	WU. 80	Q	-118	G	+5.5	-3.0	-23	-55	-82	-122	-145			
	AD. 60	D/T	+55	G/D	+130	+122	+102	+70	-	-	-			
	AD. 70	D/T	+27	G	+130	+122	+102	+70	-	-	-			
	AD. 80	D/T	-11	G	+130	+122	+102	+70	-	-	-			
	WU. 70	Т	-45	G	+124	+116	+96	+64	+37	-3.0	-26			
DRS 400	WU. 70	Q	-45	G	+74	+66	+46	+14	-13	-53	-76			
	WU. 80	Т	-75	G	+98	+90	+70	+38	+11	-29	-52			
	WU. 80	Q	-75	G	+48	+40	+20	-12	-39	-79	-102			
	WU. 90	Т	-115	G	+98	+90	+70	+38	+11	-29	-52			
	WU. 90	Q	-115	G	+37	+29	+9.0	-23	-50	-90	-113			
	AD. 70	D/T	+77	G	+180	+172	+152	+120	+93	+53	+30			
	AD. 80	D/T	+39	G	+180	+172	+152	+120	+93	+53	+30			
	AU. 90	D/T	0	G	+180	+172	+152	+120	+93	+53	+30			
	WU. 80	Т	-25	G	+148	+140	+120	+88	+61	+21	-2.0			
DRS 500	WU. 80	Q	-25	G	+98	+90	+70	+38	+11	-29	-52			
	WU. 90	Т	-65	G	+148	+140	+120	+88	+61	+21	-2.0			
	WU. 90	Q	-65	G	+87	+79	+59	+27	0	-40	-63			
	WU. 100	Т	-140	G	+136	+128	+108	+76	+49	+9.0	-14			
	WU. 100	Q	-140	G	+58	+50	+30	-2.0	-29	-69	-92			
						ı					2033504			

20335044_035


Note: More favourable ground clearance can be achieved when gearbox type WU 60 - 100 model B14.2/B14.8 is used.


Obstade edge G = Gearbox housing Obstade edge D = Torque bracket


¹⁾ Table values are based on the nominal travel wheel diameter (wheel block size). The ground clearance increases for travel wheel types C, E and F owing to the larger travel wheel diameter.

Ground Clearance Tables- AM 20 Offset Gearbox Turned 15°

Wheel	Gearb	ox	Ground clearance	Component	Groun	d clearance x2 1) [mm]	Overall height x3 1) [mm]				
block			x1 1) [mm]	obstacle	to motor h	ousing dependi	ng on size	to motor housing depending on size				
			to	edge								
			gearbox housing		ZB. 63/71	ZB. 80/90A	ZB. 90B/100	ZB. 63/71	ZB. 80/90A	ZB. 90B/100		
DRS 112			-1.4	G	+3.5	-6.2	-28	+162	+172	+194		
DRS 125	AM. 20	D/T	+5.1	G	+10	0	-22	+169	+179	+201		
DRS 160			+11	D	+27	+18	-4.3	+186	+196	+218		

20335044_036

Obstacle edge G = Gearbox housing Obstacle edge D = Torque bracket

Table values are based on the nominal travel wheel diameter (wheel block size). The ground clearance increases for travel wheel types C, E and F owing to the larger travel wheel diameter.